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Abstract

There has been considerable growth in the development of
machine learning algorithms for clinical applications. The
authors survey recent machine learning models developed
with the use of large health administrative databases at ICES
and highlight three areas of ongoing development that are
particularly important for health system applications.

Introduction

There has been increasing interest in applying machine learning
methods to large, linked and routinely collected health admin-
istrative databases that contain person-level data on billing
codes, procedures, medications, geography and demographics.
Machine learning models have been gaining in popularity as
there is increasing availability of large databases that support
methods that require fewer assumptions in underlying data
structure and less user input in the selection of predictors, and
focus on maximizing predictive performance as opposed to
supporting hypothesis-driven inference (Bi et al. 2019). Most
recent health database examples are focused on a supervised
classification task (i.e., generating a probability of a patient
experiencing a disease state or healthcare event), but there
also have been examples of unsupervised applications (i.e.,
to reveal subgroups of significance for population segmenta-
tion or to understand patient heterogeneity) (Liao et al. 2016;
Morgenstern et al. 2020; Schifer et al. 2010). What insights
are possible with applying these more flexible methods to
large health administrative databases? How can these models
inform policy and clinical practice? And finally, what are the
key considerations when developing and using these models?
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We address these questions through a survey of recent models
developed using ICES data holdings in Ontario (Gutierrez et al.
2021; Ravaut et al. 2021a, 2021b; Yi et al. 2021).

Increasing Application of Machine Learning
Methods to Routinely Collected Health Data
Despite enthusiasm for machine learning methods, there has
been considerable debate on where value is added compared to
traditional statistical approaches (Christodoulou et al. 2019;
Weaver and McAlister 2021). One of the challenges with these
comparisons is that they are focused on a heterogeneous set
of models with wide variability in the properties of the data.
Machine learning approaches are more likely to show an advan-
tage when applied to a more complex data structure where the
flexibility models can demonstrate value. Ravaut et al. (2021b)
demonstrated one approach to leveraging this complexity by
gathering healthcare events across multiple health adminis-
trative data sets chronologically and mapping them dynami-
cally to a patient timeline (Ravaut et al. 2021b) (Figure 1).
A high level of model performance was achieved by learning
the relationship between a patient’s health state and their risk
of an outcome — in this case, developing complications from
diabetes. This learning has to be undertaken dynamically as
each individual’s interactions with the health system varies over
time. This “sliding window” approach allowed for data from
millions of patients and tens of millions of patient instances to
train the model, ultimately resulting in its ability to accurately
predict the risk of a patient developing complications from
diabetes three years in advance with high performance.
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FIGURE 1.

Structure of health administrative data used in the development of the machine learning model
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Potential for Health Services and Policy

There has been considerable growth in the development of
machine learning algorithms for individual clinical applica-
tions; however, less attention has been paid to system-level
applications. Largely due to social determinants, the risks of
numerous adverse health outcomes (e.g., the development of
chronic diseases) are not diffuse in a population but concen-
trated in certain subgroups. Data-driven tools can be used to
support health systems for ongoing risk assessment and the
targeting of interventions for those who would benefit the most
(Manuel and Rosella 2010; Rose 2020). Further applications
include understanding cost distributions to improve system
management (Bilandzic and Rosella 2017; O’Neill et al. 2021;
Ravaut et al. 2021a).

One example of system-level applications was demonstrated
in the context of the COVID-19 pandemic. Upon the author-
ization of COVID-19 vaccines in early 2021, several health
systems needed to determine how to prioritize the vaccine
rollout. To prioritize vaccine eligibility, many jurisdictions
developed simple decision rules involving age, geography and
co-morbidity burden. We developed a machine learning model
using two years’ worth of data on demographic characteristics,
prescriptions, laboratory values and health system interactions
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to predict the risk of hospitalization in patients who tested
positive for SARS-CoV-2 (Gutierrez et al. 2021). The perfor-
mance of this model was tested against four empirical rules:
ranking by age, ranking by the number of comorbidities and
two sequential combinations of age and comorbidities using
recall (or sensitivity) at three cut-off points (the top 10%,
20% and 30% of patients, generally referred to as “recall at
k”). The analysis includes a comparison of model-based recall
versus empirical rules to inform vaccine prioritization based on
age or comorbidity and thus demonstrated that the additional
information included in the machine learning model could
allow for more refined decision making at the population level.

This approach holds promise for many health system
applications. Patients with chronic diseases drive the majority
of healthcare spending (Tinetti et al. 2012), yet our health-
care and public health systems often take siloed approaches
to chronic disease management and prevention (Rosella and
Kornas 2018). For example, patients with diabetes are at risk
for a wide range of complications including cardiovascular
events, kidney disease and retinopathy. Ravaut et al. (2021b)
combined the aforementioned “recall at k” metric of their
developed machine learning algorithm with a validated costing
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algorithm to estimate the cost burden of patients developing a
range of diabetes-related complications. The top 1% of patients
predicted at risk by this model represents a cost of over $400
million. Targeting interventions based on such model outputs
could help maximize the cost-effectiveness of limited health
system resources and meaningfully impact disease trajecto-
ries. Overall, these approaches support the potential for more
precise stratification of risk groups in the population. These
insights must be balanced with a population-wide perspective
that focuses on policies and interventions that address system
and societal factors, in addition to individual-level clinical
interventions (Ramaswami et al. 2018).

Methodological Considerations and the Need
for Teamwork
One common thread in the successful implementation of
machine learning models as they apply to health data is the
need for multidisciplinary teams that include epidemiologists,
statisticians, computer scientists, clinicians and other experts
who deeply understand the nuances of the data. In addition,
successful projects will have both a health system perspective —
especially if that is the intended application — and a clinical
perspective as many of the data are generated from clinical
encounters (Agniel et al. 2018). This mix is essential not only
to ensure both rigorous development and analysis but also
to create relevant and impactful outcomes. Supporting these
multidisciplinary teams might also require building capacity in
modern computing infrastructure (Schull et al. 2020).
Numerous metrics are used to measure the performance
of predictive models. In clinical settings, two commonly used
metrics are precision (or positive predictive value) and recall.
There are often trade-offs in optimizing performance with
these metrics because, in clinical settings, stakeholders need
to balance the detection of enough patients at risk for certain
outcomes with alarm fatigue (Verma et al. 2021). However, at
the health systems level, the concordance between observed
and predicted risks, otherwise known as calibration, is particu-
larly important (Van Calster et al. 2019). Underestimating risk
with a predictive model meant to guide resource allocation
could amplify gaps in care that may already exist, while overes-
timating risk could lead to inefficient use of resources and not
adequately addressing need in the population (Chen et al. 2020).
A major issue with the application of risk models in popula-
tion health is their ability to recapitulate biases in underlying
data and amplify health inequities (Gervasi et al. 2022). These
biases, which have been noted in existing algorithms in the
US, perpetuate inequities in who is receiving care and covered
through health insurance (Obermeyer et al. 2019). A number of
strategies to minimize the likelihood of bias in health algorithms
are described elsewhere (Chen et al. 2021), but one important
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approach involves examining models for performance gaps in
population subgroups to ensure that the model is performing
similarly across the population. In our work to predict the
onset of type 2 diabetes (Ravaut et al. 2021a), we examined
calibration not just in the entire test population but also by age,
material deprivation, race/ethnicity, sex, amount of contact
with the healthcare system and immigration status, demon-
strating subgroup performance of a diabetes-onset prediction
model across population groups. The model is evaluated on
several partitions of the test population and for each subset
reports the size, incidence rate and average model prediction.
This type of analysis is essential in model assessment because
if discrepancies are found in subgroup performance then the
decisions based on these algorithms will differentially affect
subgroups in the population. When these differences are noted,
there may be a need to revisit model development or apply the
use of recalibration methods to correct these discrepancies and
increase fairness (Barda et al. 2020).

Continued Challenges to Overcome

As the applications for machine learning increase, there will
be continual improvements to the underlying methods. We
identify three areas of ongoing development that are particu-
larly important for health system applications. Interpretability
(understanding how the model parameters are influencing the
model outcome) and explainability (accounting for how the
algorithm influences decisions made based on that model)
are two complementary approaches to foster trust in machine
learning models (Petch et al. 2022). A third approach, trans-
parency, documents how the model was created and validated
to ensure that interpretability and explainability can be criti-
cally assessed, just as we would assess any evidence we use to
inform health decisions (Andaur Navarro et al. 2021; Collins
and Moons 2019). Tree-based models, such as the gradient-
boosted decision trees we applied in our recent experience,
work well for developing algorithms using administrative data
sets, offer the advantage of being able to more easily report on
model features and how they are used and are well suited to the
underlying tabular structure of administrative data (Friedman
2002). Interpretability and explainability are areas of machine
learning research that are rapidly evolving, especially through
advances in visualization approaches (Apley and Zhu 2020;
Lundberg et al. 2020; Vellido 2020).

The second challenge is related to the translation of these
models. Once models are developed, health system practi-
tioners must consider whether their end goal is to develop a
static research product (i.e., a proof of concept) or an actively
used tool to guide decision making. The latter goal requires
insights into machine learning operations (MLOps) and
human factors. MLOps are a set of practices to deploy and
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maintain machine learning models in the real world (Alla and
Adari 2021). A particular aspect of MLOps to consider is data
set shift, or changes in the underlying data between when a
model was developed and when it was used (Guo et al. 2021).
For example, Gutierrez et al. (2021) developed their model
prior to the emergence and spread of COVID-19 variants
in Ontario. Because these variants have distinct biological,
epidemiological and clinical profiles, the model’s performance
must be scrutinized over time to ensure it remains robust.
Successfully deploying machine learning tools also requires
thoughtful attention to several dimensions of human factors
including user interfaces, user experiences and workflows
(Sendak et al. 2020; Verma et al. 2021).

Finally, developers and users must recognize the limita-
tions of health administrative data for certain applications.
A clinical application, such as recognizing acute deteriora-
tion in hospitalized patients, necessitates using more granular
and temporally resolved data from electronic medical records.
Ongoing work to link administrative data to hospital, primary
care and environmental databases will provide further insights
into population health. Those working in health policy and
health system settings must subject the data and the model
outputs to careful scrutiny to determine if they will support
their intended purpose.

Conclusion

As we begin to see more machine learning models generated
from large health administrative databases, the questions
we raise will become more important. Thoughtful practices
in both the development and application of the models can
support novel health system applications. We identify three
key learnings needed for the continued evolution of machine
learning methods to health administrative data. First is the
need for explicit articulation of the intended use of the model
that is appropriate given the nature of the data (i.e., coded data
on healthcare interactions). This also includes clarifying how
the generated model is appropriate for the intended purpose
(e.g., health system applications versus informing direct patient
care). Second, practitioners should adhere to methodological
best practices to ensure rigour and transparency, including
following reporting guidelines and risk-of-bias guidelines
(Collins et al. 2021). In addition, models should be assessed
through the lens of fairness and include thorough calibration
and subgroup performance assessments. Finally, multidisci-
plinary teams are vital to ensure the successful development
and assessment of these models, given the different perspec-
tives needed on the methods, the content of the data and the
intended applications in the health system.
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